首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Copolymerization of Vinyl Chloride and Sulfur Dioxide. III. Evaluation of the Copolymerization Mechanism
Authors:R E Cais  D J T Hill  J H O′donnell
Institution:1. Chemistry Department , University of Queensland , Brisbane, 4067, Queensland, Australia;2. Bell Laboratories , Murray Hill, New Jersey, 07974;3. Chemistry Department , University of Queensland , Brisbane, 4067, Queensland, Australia
Abstract:The mechanism of copolymerization of vinyl chloride (V) with sulfur dioxide (S) to form a variable composition polysulfone with average V:S molar ratio n ≥ 1 is examined. The copolymerization deviates from Lewis-Mayo behavior above -78°C. Alternative models for propagation involving (1) penultimate and pen-penultimate unit effects, (2) complex participation, and (3) depropagation are considered quantitatively by comparison of calculated and experimental copolymer/comonomer composition relationships and comonomer sequence distributions. Our theoretical modeling of the copolymerization shows that it is difficult to discriminate convincingly between alternative mechanisms. The penultimate and pen-penultimate effect models can account for the copolymer compositions, but not for the dilution effects which were observed provided the diluent is truly inert. The complex participation model can account for experimental behavior from -78 to -18°C by the assumption of addition of SV complexes, but it becomes rapidly less satisfactory at higher temperatures. Depropagation is the only model which can account for the compositions and dilution effects above 0°C. Progressive depropagation, with increasing temperature, of chains ending in the triad sequences ~SVS?, ~VVS?, and ~VSV? can explain the observed behavior over the entire comonomer composition and temperature range, but involvement of comonomer complexes in the propagation reactions is highly likely below 0°C.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号