首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analysis of the coexisting pathways for NO and N2O formation in Chernozem using the 15N-tracer SimKIM-Advanced model
Authors:Claus Florian Stange  Oliver Spott  Rolf Russow
Institution:1. Federal Institute for Geosciences and Natural Resources, Hannover, Germanyflorian.stange@bgr.de;3. Department of Soil Physics, Helmholtz Centre for Environmental Research – UFZ, Halle/Saale, Germany
Abstract:The nitrogen (N) cycle consists of a variety of microbial processes. These processes often occur simultaneously in soils, but respond differently to local environmental conditions due to process-specific biochemical restrictions (e.g. oxygen levels). Hence, soil nitrogen cycling (e.g. soil N gas production through nitrification and denitrification) is individually affected through these processes, resulting in the complex and highly dynamic behaviour of total soil N turnover. The development and application of methods that facilitate the quantification of individual contributions of coexisting processes is a fundamental prerequisite for (i) understanding the dynamics of soil N turnover and (ii) implementing these processes in ecosystem models. To explain the unexpected results of the triplet tracer experiment (TTE) of Russow et al. (Role of nitrite and nitric oxide in the processes of nitrification and denitrification in soil: results from 15N tracer experiments. Soil Biol Biochem. 2009;41:785–795) the existing SimKIM model was extended to the SimKIM-Advanced model through the addition of three separate nitrite subpools associated with ammonia oxidation, oxidation of organic nitrogen (Norg), and denitrification, respectively. For the TTE, individual treatments with 15N ammonium, 15N nitrate, and 15N nitrite were conducted under oxic, hypoxic, and anoxic conditions, respectively, to clarify the role of nitric oxide as a denitrification intermediate during N2O formation. Using a split nitrite pool, this analysis model explains the observed differences in the 15N enrichments in nitric oxide (NO) and nitrous oxide (N2O) which occurred in dependence on different oxygen concentrations. The change from oxic over hypoxic to anoxic conditions only marginally increased the NO and N2O release rates (1.3-fold). The analysis using the model revealed that, under oxic and hypoxic conditions, Norg-based N2O production was the dominant pathway, contributing to 90 and 50 % of the total soil N2O release. Under anoxic conditions, denitrification was the dominant process for soil N2O release. The relative contribution of Norg to the total soil NO release was small. Ammonia oxidation served as the major pathway of soil NO release under oxic and hypoxic conditions, while denitrification was dominant under anoxic conditions. The model parameters for soil with moderate soil organic matter (SOM) content were not scalable to an additional data set for soil with higher SOM content, indicating a strong influence of SOM content on microbial N turnover. Thus, parameter estimation had to be re-calculated for these conditions, highlighting the necessity of individual soil-dependent parameter estimations.
Keywords:ammonia oxidation  carbon storage  denitrification  greenhouse gases  mathematical modelling  nitrogen-15  Norg oxidation  soil aeration  stable isotope tracer techniques
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号