首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phase-field modeling of hydraulic fracture
Institution:1. Institute for Structure Mechanics, Bauhaus University Weimar, Marienstr. 15, Weimar 99423, Germany;2. School of Civil Engineering of Barcelona (ETSECCPB), Departament de Matemática Aplicada 3, Universitat Politècnica de Catalunya, Spain;3. Laboratori de Càlcul Numèric, Universitat Politècnica de Catalunya (UPC Barcelona-Tech), 08034 Barcelona, Spain;4. Professor School of Civil, Environmental and Architectural Engineering, Korea University, Republic of Korea;1. Computational Mechanics, University of Kaiserslautern, P.O. Box 3049, D-67653 Kaiserslautern, Germany;2. Institute of Applied Mechanics, University of Kaiserslautern, P.O. Box 3049, D-67653 Kaiserslautern, Germany;1. Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France;2. The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China;3. Université Paris-Est, Laboratoire Navier, CNRS UMR 8205, ENPC, IFSTTAR, 6/8 avenue Blaise Pascal, 77455 Marne-la-Vallée, France
Abstract:In this work a theoretical framework implementing the phase-field approach to fracture is used to couple the physics of flow through porous media and cracks with the mechanics of fracture. The main modeling challenge addressed in this work, which is a challenge for all diffuse crack representations, is on how to allow for the flow of fluid and the action of fluid pressure on the aggregate within the diffuse damage zone of the cracks. The theory is constructed by presenting the general physical balance laws and conducting a consistent thermodynamic analysis to constrain the constitutive relationships. Constitutive equations that reproduce the desired responses at the various limits of the phase-field parameter are proposed in order to capture Darcy-type flow in the intact porous medium and Stokes-type flow within open cracks. A finite element formulation for the solution of the governing model equations is presented and discussed. Finally, the theoretical and numerical model is shown to compare favorably to several important analytical solutions. More complex and interesting calculations are also presented to illustrate some of the advantageous features of the approach.
Keywords:Hydraulic fracture  Continuum thermodynamics  Finite element methods  Nonlinear poroelasticity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号