首页 | 本学科首页   官方微博 | 高级检索  
     


Change of electrostatic potential of mean force between two curved surfaces due to different salt composition,ion valence and size under certain ionic strength
Affiliation:1. i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;2. Department of Physics, United States Naval Academy, Annapolis, MD 21402, USA;3. Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
Abstract:Change of an electrostatic potential of mean force (EPMF) between two cylindrical rod surfaces with salt composition, ion valence, and ion size at a constant ionic strength of 0.3 M is studied by a classical density functional theory (CDFT) in a primitive model electrolyte solution. Several novel observations are made: (i) strength of a so-called like charge attraction (LCA) reduces in an invariable manner with the salt solution changing from single 2:1 electrolyte to mixture of 2:1 and 1:1 type electrolytes of varying concentration ratios; the change is even over entire range of the composition variation under low surface charge strength, and tends to be insensitive to the composition variation in the presence of the divalent counter-ion, and more and more drastic at a critical point the divalent counter-ion disappears, respectively, as the surface charge strength becomes big enough. (ii) Both monovalent counter-ion and co-ion diameters have only a marginal effect on both the LCA strength and equilibrium distance, and the former “abnormally” affects less than the latter. (iii) Depending on the surface charge strength considered, the divalent counter-ion diameter influences the LCA strength in solution comprised of 2:1 type and 1:1 type electrolytes, monotonously or non-monotonously. All of these findings provide forceful support for a recently proposed hydrogen-bonding style mechanism explaining the LCA.
Keywords:D. thermodynamic properties  C. ab initio calculations
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号