首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Linalool isomerase,a membrane-anchored enzyme in the anaerobic monoterpene degradation in <Emphasis Type="Italic">Thauera linaloolentis</Emphasis> 47Lol
Authors:Robert Marmulla  Barbara Šafarić  Stephanie Markert  Thomas Schweder  Jens Harder
Institution:1.Department of Microbiology,Max Planck Institute for Marine Microbiology,Bremen,Germany;2.Institute for Pharmacy, Department of Pharmaceutical Biotechnology,University of Greifswald,Greifswald,Germany
Abstract:

Background

Thauera linaloolentis 47Lol uses the tertiary monoterpene alcohol (R,S)-linalool as sole carbon and energy source under denitrifying conditions. The conversion of linalool to geraniol had been observed in carbon-excess cultures, suggesting the presence of a 3,1-hydroxyl-Δ12-mutase (linalool isomerase) as responsible enzyme. To date, only a single enzyme catalyzing such a reaction is described: the linalool dehydratase/isomerase (Ldi) from Castellaniella defragrans 65Phen acting only on (S)-linalool.

Results

The linalool isomerase activity was located in the inner membrane. It was enriched by subcellular fractionation and sucrose gradient centrifugation. MALDI-ToF MS analysis of the enriched protein identified the corresponding gene named lis that codes for the protein in the strain with the highest similarity to the Ldi. Linalool isomerase is predicted to have four transmembrane helices at the N-terminal domain and a cytosolic domain. Enzyme activity required a reductant for activation. A specific activity of 3.42?±?0.28 nkat mg * protein?1 and a kM value of 455?±?124 μM were determined for the thermodynamically favored isomerization of geraniol to both linalool isomers at optimal conditions of pH 8 and 35 °C.

Conclusion

The linalool isomerase from T. linaloolentis 47Lol represents a second member of the enzyme class 5.4.4.4, next to the linalool dehydratase/isomerase from C. defragrans 65Phen. Besides considerable amino acid sequence similarity both enzymes share common characteristics with respect to substrate affinity, pH and temperature optima, but differ in the dehydratase activity and the turnover of linalool isomers.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号