首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhanced interfacial interaction by grafting carboxylated‐macromolecular chains on nanodiamond surfaces for epoxy‐based thermosets
Authors:Yinhang Zhang  Soo‐Jin Park
Institution:Department of Chemistry, Inha University, 100 Inharo, Incheon, Korea
Abstract:A novel core‐shell‐structured carboxylated‐styrene butadiene rubber (XSBR)‐functionalized nanodiamond (ND‐XSBR) was synthesized and characterized. Epoxy (EP) nanocomposites toughened by pristine ND and ND‐XSBR were investigated and compared. The ND‐XSBR‐reinforced nanocomposite exhibited mechanical properties superior to those of the one filled by pristine ND. At a low‐filler loading, the ND‐XSBR exhibited an impressive toughening effect. The maximum flexural strength was shown when the filler loading was as low as 0.1 wt % for the EP/ND‐XSBR nanocomposite. Furthermore, enhanced fracture toughness and fracture energy were shown by surface functionalization, representing enhanced compatibility between the ND‐XSBR and EP matrix. The glass transition temperature (Tg) and storage modulus of the nanocomposites were studied, and the EP/ND‐XSBR0.1 nanocomposite exhibited the highest Tg owing to the stronger interfacial interaction. The EP/ND‐XSBR0.2 exhibited higher storage modulus and Tg than the EP/ND0.2, because the higher interfacial interaction can restrict the molecular mobility of the EP by the functionalized ND‐XSBR. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1890–1898
Keywords:epoxy  interfaces  interfacial interaction  nanocomposites  nanodiamond  mechanical properties  thermosets
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号