首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Two-pattern strings II—frequency of occurrence and substring complexity
Authors:Frantisek Franek  Jiandong Jiang  WF Smyth  
Institution:

aAlgorithms Research Group, Department of Computing & Software, McMaster University, Hamilton, Ontario, Canada L8S 4K1

Abstract:The previous paper in this series introduced a class of infinite binary strings, called two-pattern strings, that constitute a significant generalization of, and include, the much-studied Sturmian strings. The class of two-pattern strings is a union of a sequence of increasing (with respect to inclusion) subclasses Tλ of two-pattern strings of scope λ, λ=1,2,…. Prefixes of two-pattern strings are interesting from the algorithmic point of view (their recognition, generation, and computation of repetitions and near-repetitions) and since they include prefixes of the Fibonacci and the Sturmian strings, they merit investigation of how many finite two-pattern strings of a given size there are among all binary strings of the same length. In this paper we first consider the frequency fλ(n) of occurrence of two-pattern strings of length n and scope λ among all strings of length n on {a,b}: we show that limn→∞fλ(n)=0, but that for strings of lengths nless-than-or-equals, slant2λ, two-pattern strings of scope λ constitute more than one-quarter of all strings. Since the class of Sturmian strings is a subset of two-pattern strings of scope 1, it was natural to focus the study of the substring complexity of two-pattern strings to those of scope 1. Though preserving the aperiodicity of the Sturmian strings, the generalization to two-pattern strings greatly relaxes the constrained substring complexity (the number of distinct substrings of the same length) of the Sturmian strings. We derive upper and lower bounds on C1(k) (the number of distinct substring of length k) of two-pattern strings of scope 1, and we show that it can be considerably greater than that of a Sturmian string. In fact, we describe circumstances in which limk→∞(C1(k)−k)=∞.
Keywords:String  Two-pattern  Sturmian  Complexity  Frequency  Periodicity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号