首页 | 本学科首页   官方微博 | 高级检索  
     

基于经验模态分解的高光谱遥感数据去噪方法
引用本文:董士伟,周子勇. 基于经验模态分解的高光谱遥感数据去噪方法[J]. 光谱实验室, 2010, 27(3): 940-944
作者姓名:董士伟  周子勇
作者单位:中国石油大学(北京)油气资源与探测国家重点实验室,北京市昌平区府学路18号,102249;中国石油大学(北京)油气资源与探测国家重点实验室,北京市昌平区府学路18号,102249
基金项目:国家自然科学基金资助项目 
摘    要:经验模态分解(EMD)是一种新的时频分析方法,经EMD分解后的各个固有模态函数(IMF)突出了原始信号的局部特征,从而可以区分噪声和有用信号。基于此,结合高光谱遥感数据的光谱变化特征,提出了一种基于经验模态分解的高光谱遥感数据去噪方法。通过对理论数据的实验表明,数据中的噪声无论是高斯分布还是均匀分布,数据经EMD分解后,噪声都主要集中在前几个特定的IMF,对相应的IMF进行滤波处理后并与其他IMF分量进行重构就可得到去噪信号,与小波去噪结果相比较,这种方法效果更好。最后把该去噪方法应用于野外实测的油膜高光谱数据去噪,实验结果表明,该方法能准确、有效地去除高光谱遥感数据的噪声。

关 键 词:经验模态分解  固有模态函数  高光谱  去噪

De-Nosing Method of Hyperspectral Data Based on EMD
DONG Shi-Wei,ZHOU Zi-Yong. De-Nosing Method of Hyperspectral Data Based on EMD[J]. Chinese Journal of Spectroscopy Laboratory, 2010, 27(3): 940-944
Authors:DONG Shi-Wei  ZHOU Zi-Yong
Affiliation:DONG Shi-Wei ZHOU Zi-Yong(State Key Laboratory of Petroleum Resource and Prospecting,China University of Petroleum,Beijing 102249,P.R.China)
Abstract:Empirical mode decomposition (EMD) is a relatively new time-frequency analysis method.IMFs were developed by EMD outstand local characteristics of the original signal,so they can discriminate the signals from the noise.An EMD based approach to hyperspectral data de-noising is proposed in the work.The simulative experiment with theoretical data shows that Gaussian-distributed noise or uniform-distributed noise inhered in the data is mainly concentrated in the first few specific IMFs.Therefore,the filtered noise-related IMFs together with the other IMFs can be used to restructure the denoised signal.Experimental result shows that the proposed method is more effective than wavelet-based method.Finally,this method is applied to denoise field oil-slick hyperspectral data and the results show that the method can denoise the inherent noise in hyperspectral data accurately and effectively.
Keywords:Empirical Mode Decomposition  Intrinsic Mode Function  Hyperspectral  De-Noising
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号