首页 | 本学科首页   官方微博 | 高级检索  
     


Interaction information and Markov chain
Authors:Seiji Takano
Affiliation:Department of Mathematics, Tokyo Institute of Technology, Tokyo, Japan
Abstract:The problem of multivariate information analysis is considered. First, the interaction information in each dimension is defined analogously according to McGill [4] and then applied to Markov chains. The property of interaction information zero deeply relates to a certain class of weakly dependent random variables. For homogeneous, recurrent Markov chains with m states, mn ≥3, the zero criterion of n-dimensional interaction information is achieved only by (n ? 2)-dependent Markov chains, which are generated by some nilpotent matrices. Further for Gaussian Markov chains, it gives the decomposition rule of the variables into mutually correlated subchains.
Keywords:94A15  62H30  60J10  60J05  60J15  60K35  Interaction information  Markov chain  multivariate information analysis  information theory
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号