首页 | 本学科首页   官方微博 | 高级检索  
     检索      

与非平衡问题相关的尺度效应:场与微粒
引用本文:薛昌明,唐雪松.与非平衡问题相关的尺度效应:场与微粒[J].力学进展,2004,34(2):145-170.
作者姓名:薛昌明  唐雪松
作者单位:美国Lehigh大学断裂与固体力学研究所
摘    要:纳米技术的出现,使我们有必要更好地了解,在原子水平上材料微结构的变化是如何影响和控制着材料的宏观性能.这一挑战涉及到许多以前不曾考虑和不曾了解的现象.其中,位错理论的基础现在知道是有问题的.宏观尺度下采用的简化假设,也许不能用于微观和纳米尺度.尺度效应的含义,涉及到物理系统的非均质和非平衡特性.宏观尺度下的均匀与平衡特性,在材料的物理尺度减少到微米量级时就不再保持了.这些基本观点不能够为了方便而随意到处使用,因为这会改变预测的结果.更令人不满的是在建立物理模型时缺乏一致性.由此产生的问题是在确定制造过程中的有关参数时无能为力,导致由于成本过高而不切实际的终端产品.先进的复合材料和陶瓷材料就存在这样的问题.本文将要讨论的是在原子尺度与连续介质尺度下应用理论模型时存在的潜在问题,而不是去揭示自然的真相.主要讨论微粒,均匀连续介质或者两者的结合.尺度效应问题当前的发展趋势,趋向于在有或者没有时间效应的情况下寻找材料微结构的不同特征尺寸.从原子模拟模型中将了解到许多情况,原子模拟计算将揭示计算结果如何随着边界条件和尺度变化而不同.量子力学,连续介质力学和宇宙模型证明,没有普遍适用的方法.当前的主要兴趣也许是针对多尺度物理问题在技术上建立更高的精度,以得到一个更好的表达结果. 

关 键 词:尺度效应    连续场    微粒    非平衡热力学    等能密度理论    (isoenergy  density  theory)    原子模拟理论

IMPLICATION OF SCALING HIERARCHY ASSOCIATED WITH NONEQUILIBRIUM:FIELD AND PARTICULATE
George C Sih.IMPLICATION OF SCALING HIERARCHY ASSOCIATED WITH NONEQUILIBRIUM:FIELD AND PARTICULATE[J].Advances in Mechanics,2004,34(2):145-170.
Authors:George C Sih
Institution:George C Sih Department of Mechanical Engineering and Mechanics,Lehigh University,Bethlehem,PA 18015,USA Institute of Mechanics,Chinese Academy of Science,Beijing 100080,China School of Mechnical Engineering,East China University of Science and Technology,Shanghai 200237,China
Abstract:The advent of nanotechnology has necessitated a better understanding of how the material mi- crostructure changes at the atomic level would affect the macroscopic properties that control the performance. Such a challenge has uncovered many phenomena that were not previously understood and taken for granted. Among them are the basic foundation of dislocation theories which are now known to be inadequate. Sim- plifying assumptions invoked at the macroscale may not be applicable at micro- and/or nanoscale. There are implications of scaling hierarchy associated with inhomogeneity and nonequilibrium of physical systems. What is taken to be homogeneous and in equilibrium at the macroscale may not be so when the physical size of the material is reduced to microns. These foundamental issues cannot be dispensed at will for the sake of conve- nience because they might alter the outcome of predictions. Even more unsatisfying is the lack of consistency in modeling physical systems. This could be translated to the inability for identifying the relevant manufacturing parameters and rendering the end product unpractical because of high cost. Advanced composite and ceramic materials are cases in point. Discussed are potential pitfalls for applying models at both the atomic and continuum levels. No encour- agement is made to unravel the truth of nature. Let it be particulates, a smooth continuum or combination of both. The present trend of development in scaling tends to seek different characteristic lengths of material microstructure with or without the influence of time effects. Much will be learned from atomistic simulation models to show how results could differ as boundary conditions and scales are changed. Quantum mechanics, continuum and cosmological models provide evidence that no general approach is in sight. Of immediate interest is perhaps the establishment of greater precision in terminology so as to better communicate results involving multiscale physical events.
Keywords:Scaling effect  continuum field  particulate  nonequilibrium thermodynamics  isoenergy density theory  atomic simulation method  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《力学进展》浏览原始摘要信息
点击此处可从《力学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号