Dynamic and Quantitative Control of the DNA‐Mediated Growth of Gold Plasmonic Nanostructures |
| |
Authors: | Dr. Jianlei Shen Lifeng Xu Dr. Chunpeng Wang Dr. Hao Pei Prof.Dr. Renzhong Tai Prof.Dr. Shiping Song Prof.Dr. Qing Huang Prof.Dr. Chunhai Fan Prof.Dr. Gang Chen |
| |
Affiliation: | Shanghai Synchrotron Radiation Facility, Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China) |
| |
Abstract: | Reproducible and controllable growth of nanostructures with well‐defined physical and chemical properties is a longstanding problem in nanoscience. A key step to address this issue is to understand their underlying growth mechanism, which is often entangled in the complexity of growth environments and obscured by rapid reaction speeds. Herein, we demonstrate that the evolution of size, surface morphology, and the optical properties of gold plasmonic nanostructures could be quantitatively intercepted by dynamic and stoichiometric control of the DNA‐mediated growth. By combining synchrotron‐based small‐angle X‐ray scattering (SAXS) with transmission electron microscopy (TEM), we reliably obtained quantitative structural parameters for these fine nanostructures that correlate well with their optical properties as identified by UV/Vis absorption and dark‐field scattering spectroscopy. Through this comprehensive study, we report a growth mechanism for gold plasmonic nanostructures, and the first semiquantitative revelation of the remarkable interplay between their morphology and unique plasmonic properties. |
| |
Keywords: | DNA electron microscopy gold nanoparticles small‐angle X‐ray scattering surface‐enhanced Raman scattering |
|
|