Nonequilibrium mechanisms of weak electrolyte electrification under the action of constant voltage |
| |
Authors: | Yu. K. Stishkov V. A. Chirkov |
| |
Abstract: | The formation of space charge in weak electrolytes, specifically in liquid dielectrics, has been considered. An analytical solution is given to a simplified set of Nernst–Planck equations that describe the formation of nonequilibrium recombination layers in weak electrolytes. This approximate analytical solution is compared with computer simulation data for a complete set of Poisson–Nernst–Planck equations. It has been shown that the current passage in weak electrolytes can be described by a single dimensionless parameter that equals the length of a near-electrode recombination layer divided by the width of the interelectrode gap. The formation mechanism and the structure of charged nonequilibrium near-electrode layers in the nonstationary regime have been analyzed for different injection-to-conduction current ratios. It has been found that almost all charge structures encountered in weak dielectrics can be accounted for by the nonequilibrium dissociation–recombination mechanism of space charge formation. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |