Abstract: | The standard potentialssEo of M/M+ (M=Li, Na, K, Rb, and Cs) electrodes in aqueous urea solutions containing 12, 20, 30 and 37% by weight of urea have been determined at 25°C from emf measurements on the cell M(Hg)/MCl (m), solvent/AgCl–Ag, from the activities of metals in amalgams by use of a similar type of cell in water, and from the values ofsEo of the Ag/AgCl electrode determined earlier. The standard free energies of transfer of MCl, Gto(MCl), from water to the mixed solvents, computed by use of these values and those for the Ag–AgCl electrode, rise sharply from Li+ to Na+ but fall from Na+ to K+ and rather sharply from K+ to Cs+ with a maximum at Na+ in all the solvent compositions. This has been attributed to the superimposition of soft-soft interactions on the electrostatic interactions between the ions and the negative charge centers of the possible hydrogen-bonded solvent complexes in the mixed solvents. Comparison of Gto(i) values for individual ions, obtained by a simultaneous extrapolation procedure, with those in aqueous mixtures of methanol,t-butanol, and dimethyl sulfoxide leads to the conclusion that the solvation of these ions in all these solvents is chiefly dictated by the acid-base type of ion-solvent interactions. |