2'-chloro-2',3'-dideoxy-3'-fluoro-d-ribonucleosides: synthesis,stereospecificity, some chemical transformations,and conformational analysis |
| |
Authors: | Mikhailopulo Igor A Pricota Tamara I Sivets Grigorii G Altona Cornelis |
| |
Affiliation: | Institute of Bioorganic Chemistry, National Academy of Sciences, 220141 Minsk, Belarus. |
| |
Abstract: | The synthesis of methyl 5-O-benzoyl-2-chloro-2,3-dideoxy-3-fluoro-beta-d-ribofuranoside (5) and its use as a glycosylating agent for persilylated thymine, N(6)-benzoyladenine, and N(4)-benzoylcytosine are described (Scheme 1). The 2'-chloro-2',3'-dideoxy-3'-fluoro-d-ribonucleosides 10-12 synthesized were transformed to 2',3'-dideoxy-3'-fluoro-alpha- and -beta-d-erythro-pentofuranoside nucleosides of thymine (13a,b), adenine (14a,b), and cytidine (15a,b) by treatment with tributyltin hydride in the presence of alpha,alpha'-azobisisobutyronitrile (Scheme 2). Treatment of 2'-chloro-2',3'-dideoxy-3'-fluoro-d-ribonucleosides with 1 M MeONa/MeOH under reflux for 1-5 h afforded 2',3'-didehydro-2',3'-dideoxy-2'-chloro-d-pentofuranosyl nucleosides as the principal products (47-81%) of the reaction, along with recovered starting nucleoside (11-33%) (Scheme 3). Easy HF elimination was also observed in the case of the 2'-azido-2',3'-dideoxy-3'-fluoro-beta-d-ribofuranosides of thymine (17) and adenine (20) (Scheme 3). The role of conformational peculiarities of 2'-chloro-2',3'-dideoxy-3'-fluoro-d-ribonucleosides as well as of 17 and 20 in the observed exclusive elimination of HF is discussed. The conformational analysis of a rather broad palette of 2,3-dideoxy-3-fluoro-2-(X-substituted)-d-ribofuranosides was performed with the aid of the PSEUROT (version 6.3) program, using (i) the recently reparametrized Karplus-type relation (Chattopadhyaya and co-workers. J. Org. Chem. 1998, 63, 4967) and (ii) empirical bond angle correction terms suggested by us. The predictive power of the Brunck and Weinhold model (J. Am. Chem. Soc. 1979, 101, 1700) of the gauche effect between atoms and groups as a conformational driving force acting upon the pentofuranose ring is explored. Their model invokes maximum antiperiplanar sigma <--> sigma stabilization when the donating bond is the least polar one and the acceptor orbital is at the most polarized bond and is found at least as satisfactory, and in various specific cases more so than, as rationalizations on the basis of the preference of the gauche vs the trans conformation of two vicinal electronegative substituents (Wolfe. Acc. Chem. Res. 1972, 5, 102). |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|