首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical investigation of pyrolysis of a Loy Yang coal in a lab-scale furnace at elevated pressures
Authors:James Hart  Audai Hussein Al-Abbas  Jamal Naser
Institution:1. Faculty of Engineering and Industrial Science, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
2. Foundation of Technical Education, Al-Musaib Technical College, Babylon, Iraq
Abstract:A computational fluid dynamics (CFD) model of the pyrolysis of a Loy Yang low-rank coal in a pressurised drop tube furnace (pdtf) was undertaken evaluating Arrhenius reaction rate constants. The paper also presents predictions of an isothermal flow through the drop tube furnace. In this study, a pdtf reactor operated at pressures up to 15 bar and at a temperature of 1,173 K with particle heating rates of approximately 105 K s?1 was used. The CFD model consists of two geometrical sections; flow straightner and injector. The single reaction and two competing reaction models were employed for this numerical investigation of the pyrolysis process. The results are validated against the available experimental data in terms of velocity profiles for the drop tube furnace and the particle mass loss versus particle residence times. The isothermal flow results showed reasonable agreement with the available experimental data at different locations from the injector tip. The predicted results of both the single reaction and competing reaction modes showed slightly different results. In addition, several reaction rate constants were tested and validated against the available experimental data. The most accurate results were being Badzioch and Hawksley (Ind Eng Chem Process Des Dev 9:521–530, 1970) with a single reaction model and Ubhayakar et al. (Symp (Int) Combust 16:427–436, 1977) for two competing reactions. These numerical results can provide useful information towards future modelling of the behaviour of Loy Yang coal in a full scale tangentially-fired furnace.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号