Abstract: | ![]() We consider Coulomb drag between two layers of two-dimensional electron gases subject to a strong magnetic field, with the Landau level filling factor in each layer being . We find to be very large, as compared to the zero magnetic field case. We attribute this enhancement to the slow decay of density fluctuations in a strong magnetic field. For a clean system, the linear -dependence of the longitudinal conductivity, characteristic of the state, leads a unique temperature dependence – . Within a semiclassical approximation, disorder leads to a decrease of the transresistivity as compared to the clean case, and a temperature dependence of at low temperatures. |