首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamic lot-sizing in sequential online retail auctions
Authors:Xi ChenArchis Ghate  Arvind Tripathi
Institution:a Industrial and Systems Engineering, University of Washington, Seattle, USA
b Information Systems and Operations Management, University of Auckland Business School, Auckland, New Zealand
Abstract:Retailers often conduct non-overlapping sequential online auctions as a revenue generation and inventory clearing tool. We build a stochastic dynamic programming model for the seller’s lot-size decision problem in these auctions. The model incorporates a random number of participating bidders in each auction, allows for any bid distribution, and is not restricted to any specific price-determination mechanism. Using stochastic monotonicity/stochastic concavity and supermodularity arguments, we present a complete structural characterization of optimal lot-sizing policies under a second order condition on the single-auction expected revenue function. We show that a monotone staircase with unit jumps policy is optimal and provide a simple inequality to determine the locations of these staircase jumps. Our analytical examples demonstrate that the second order condition is met in common online auction mechanisms. We also present numerical experiments and sensitivity analyses using real online auction data.
Keywords:Auctions/bidding  Dynamic programming  e-Commerce
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号