Synthesis,Crystal Structure,Vibrational Spectra,and Thermal Behaviour of [Ph4P]2[Bi2(μ‐Br)2Br6 (CH3COCH3)2] |
| |
Authors: | Ibrahim Abdel Ahmed Roger Blachnik Hans Reuter Henning Eickmeier Dietrich Schultze Wolfgang Brockner |
| |
Abstract: | ![]() [Ph4P]2[Bi2Br8(CH3COCH3)2] ( 1 ) was obtained by the reaction of [Ph4P]Br and BiBr3 in acetone. Single crystals were grown by allowing a layer of n‐hexane to diffuse into the acetonic solution of 1 . The crystal structure was determined by means of X‐ray diffraction. 1 crystallises with monoclinic symmetry in the space group P21/n, No. 14 with the lattice parameters: a = 13.358(2), b = 12.637(2), c = 18.565(3) Å, β = 102.62(1)°, V = 3058.1(8) Å3 and Z = 4. The structure is characterised by the anion [Bi2Br8(CH3COCH3)2]2– which is embedded in a matrix of [Ph4P]+ cations. The anion can be described as two edge‐sharing square pyramids with the apical bromide ions in anti‐position. Acetone co‐ordinates the bismuth atoms via oxygen atoms and increases the co‐ordination number of central bismuth atoms to six which results in the formation of a distorted bi‐octahedron. The distortion is due to the difference in terminal and bridging Bi–Br bond lengths. FT‐IR and Raman spectroscopic data are presented. In addition, the thermal behaviour of the compound was studied with the aid of TG/DSC coupled with MS revealing that acetone leaves the crystal in two steps. The compound melts at 203 °C and transforms into a glass on cooling. |
| |
Keywords: | Bismuth Crystal structure Vibrational spectra Thermal analysis |
|
|