首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of an amide group in methyl octadecanoates on the monolayer stability
Authors:Dreger Katharina  Zhang Li  Galla Hans-Joachim  Fuchs Harald  Chi Lifeng  Würthwein Ernst-Ulrich  Schäfer Hans Jürgen
Institution:Organisch-Chemisches Institut der Universit?t Münster, Corrensstrasse 40, D-48149 Münster, Germany.
Abstract:The influence of a hydrogen bond donor and acceptor in the hydrophobic part of an amphiphile on the monolayer stability at the air/water interface is investigated. For that purpose, the amide group is integrated into the alkyl chain. Eight methyl octadecanoates have been synthesized with the amide group in two orientations and in different positions of the alkyl chain, namely, CH3O2C(CH2)m NHCO(CH2)n CH3 (n + m = 14): 1 (m = 1), 3 (m = 2), 5 (m = 3), 7 (m = 14); and CH3O2C(CH2)m CONH(CH2)n CH3: 2 (m = 1), 4 (m = 2), 6 (m = 3), 8 (m = 14). The monolayers have been characterized by their pi/A isotherms, their temperature dependence and Brewster angle microscopy (BAM). Amphiphile 1 with the amide group close to the ester group (m = 1) behaves like an unsubstituted fatty acid ester, while 3, 5, and 7, with the amide group in an intermediate and terminal position, exhibit a two-phase region. The amphiphiles 2, 4, 6, and 8, with a reversed orientation of the amide group, all exhibit a two-phase region with higher plateau pressures and lower collapse pressures than those of 1, 3, 5, and 7. For 7 and 8, domains of the liquid condensed (LC) phase are visualized by BAM in the two-phase region. The liquid expanded (LE)/LC-phase transitions are all exothermic with enthalpies deltaH ranging from -31 to -12 kJ/mol. Comparison with other bipolar amphiphiles indicates that the LC phase is better stabilized by the hydroxy and dihydroxy groups than by the amide group. For model compounds of 1-4, optimized conformers in the LE and LC phases have been determined by density functional theory (DFT) calculations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号