首页 | 本学科首页   官方微博 | 高级检索  
     

人工神经网络预测煤炭成浆浓度的研究
引用本文:周俊虎,李艳昌,程军,周志军,李珊珊,刘建忠,岑可法. 人工神经网络预测煤炭成浆浓度的研究[J]. 燃料化学学报, 2005, 33(6): 666-670
作者姓名:周俊虎  李艳昌  程军  周志军  李珊珊  刘建忠  岑可法
作者单位:浙江大学,能源清洁利用国家重点实验室,浙江,杭州,310027;浙江大学,能源清洁利用国家重点实验室,浙江,杭州,310027;浙江大学,能源清洁利用国家重点实验室,浙江,杭州,310027;浙江大学,能源清洁利用国家重点实验室,浙江,杭州,310027;浙江大学,能源清洁利用国家重点实验室,浙江,杭州,310027;浙江大学,能源清洁利用国家重点实验室,浙江,杭州,310027;浙江大学,能源清洁利用国家重点实验室,浙江,杭州,310027
基金项目:国家重点基础研究发展规划(973计划,2004 CB 217701);长江学者和创新团队发展计划资助.
摘    要:
考虑煤炭的多种理化特性建立了成浆浓度的神经网络预测模型,对其数据预处理方法、学习率和中间层节点数等进行了深入讨论。水分、挥发分、分析基碳、灰分和氧等五个因子对于煤炭成浆性的预测起到主导作用。五因子、七因子和八因子神经网络模型对煤炭成浆浓度的预测误差分别为:0.53%、0.50%和0.74%,而现有回归分析方程的误差为1.15%,故神经网络模型比回归分析方程有更好的预测能力,尤以七因子模型最佳。

关 键 词:  成浆性  人工神经网络  L-M算法
文章编号:0253-2409(2005)06-0666-05
收稿时间:2005-03-09
修稿时间:2005-06-27

Prediction of coal slurry concentration based on artificial neural networks
ZHOU Jun-hu,LI Yan-chang,CHENG Jun,ZHOU Zhi-jun,LI Shan-shan,LIU Jian-zhong,CEN Ke-fa. Prediction of coal slurry concentration based on artificial neural networks[J]. Journal of Fuel Chemistry and Technology, 2005, 33(6): 666-670
Authors:ZHOU Jun-hu  LI Yan-chang  CHENG Jun  ZHOU Zhi-jun  LI Shan-shan  LIU Jian-zhong  CEN Ke-fa
Affiliation:State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Abstract:
Based on experimental data of coal slurry, three BP neural network models with 8, 7 and 5 input factors, were set up for predicting the slurry concentration. Three BP neural networks’ algorithm was Levenberg-Marquardt algorithm, and their learning rate was 0.01. The hidden neurons number was settled by practical training effect of the networks. The hidden neurons number of BP model with 8, 7 and 5 input factors is 27, 30 and 24, respectively. Two data treated method were tested by seven input factors network model, which proves that the first method is the better one. The mean absolute error of the neural network models with 5, 7 and 8 factors is 0.53%, 0.50% and 0.74%, respectively, while that of the existed regression model is 1.15%. This indicates that the neural network models, especially the 7 factors’ model, are effective in predicting the slurry. The HGI input neuron in eight input factors’ model affects the prediction result because of its interference to other input factors. The effect of H and N in coal on the slurry is slight.
Keywords:coal   slurryability    artificial neural networks   Levenberg-Marquardt algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《燃料化学学报》浏览原始摘要信息
点击此处可从《燃料化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号