首页 | 本学科首页   官方微博 | 高级检索  
     


Production and characterization of poly(3-hydroxybutyrateco-3-hydroxyhexanoate)-poly(ethylene glycol) hybird copolymer with adjustable molecular weight
Authors:Ya-li Zhang  Xiao-yun Lu  Qian-qian Liu  Ming-chuan Li  Zhi-qian Yang  Jian-gang Ma
Affiliation:Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
Abstract: A novel natural-synthetic hybrid block copolymer was synthesized by Aeromonas hydrophila 4AK4 in poly(ethylene glycol) (PEG, Mn = 200) modified fermentation. This hybrid biomaterial consists of the natural hydrophobic polymer poly(3-hydroxybutyrat-co-3-hydroxyhexanoate) (PHBHHx) end-capped with hydrophilic PEG, which has the increased flexibility as well as the improved thermal stability. Addition of diethylene glycol (DEG) and ethylene glycol could not result in the accumulation of hybrid block copolymer. DEG and ethylene glycol, together with PEG-200, could cause a reduction of molar mass of PHBHHx, resulting in a series of low molecular weight polymer and the reduction of the polymer yield as well as the cellular productivity. In vitro degradation of PHBHHx and PHBHHx-PEG with different molecular weight showed that the decrease of molecular weight accelerated the degradation of copolymers, but PEG modification has little effect on its degradation rate. The results in this study provided a convenient and direct method to produce a series of PHBHHx and PHBHHx-PEG materials with adjustable molecular weight and broad molecular weight distribution which will be very useful for the biomedical applications.
Keywords:Biopolyester  Biodegradable  Molecular weight  Polyhydroxyalkanoates  Polyethylene glycol
本文献已被 CNKI SpringerLink 等数据库收录!
点击此处可从《高分子科学》浏览原始摘要信息
点击此处可从《高分子科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号