首页 | 本学科首页   官方微博 | 高级检索  
     


Investigations into the formation and characterization of microemulsions. I. Phase diagrams of the ternary system water—sodium alkyl benzene sulfonate—hexanol and the quaternary system water—xylene—sodium alkyl benzene sulfonate—hexanol
Authors:R.C. Baker   A.T. Florence   Th.F. Tadros  R.M. Wood
Affiliation:2. Department of Pharmacy, University of Strathclyde, Royal College, 204 George Street, Glasgow G1 1XW, Scotland;3. Department of Applied Physics, Sheffield City Polytechnic, Sheffield S1 1 WB, England
Abstract:
The phase diagrams of the ternary system water—sodium alkylbenzene sulfonate (NaDBS)-hexanol and the quaternary system water—xylene—NADBS—hexanol have been established at three different temperatures, namely 25, 37, and 50°C. The different phases formed have been qualitatively examined using optical (phase contrast and polarizing) microscopy. The textures of the various liquid crystalline phases in the ternary system have been identified, by comparison with previous studies in the literature. Some of the liquid crystalline phases have been quantitatively assessed using low angle X-ray diffraction. The latter measurements were also used to determine the unit cell dimensions in the various phases studied. With the quaternary system, particular attention was paid to the transparent region which consisted of an L2 (inverse micellar) phase extending into another transparent region which has a blue “tinge” in some cases, namely the microemulsion (M) region. The amount of water solubilized in the L2 (reverse micelle) or M + L2 phase was calculated from the phase diagrams. With the ternary system the results showed a maximum in moles of water solubilized per mole total surfactant (NaDBS + hexanol) at a concentration of 0.3 mole surfactant, at an optimum molar ratio of n-hexanol to NaDBS of 4.5:1. This maximum was about twice with the quaternary system, when compared with that of the ternary system, indicating the importance of the role of xylene in solubilization of water by the surfactants. The present investigation has also shown that the extent of the microemulsion region is significantly reduced by increases of temperature when the NaDBS is lower than 15 wt%.
Keywords:Author to whom correspondence should be addressed.
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号