首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pyrolysis of mesoporous silica-immobilized 1,3-diphenylpropane. Impact of pore confinement and size
Authors:Kidder Michelle K  Britt Phillip F  Zhang Zongtao  Dai Sheng  Hagaman Edward W  Chaffee Alan L  Buchanan A C
Institution:Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6197, USA.
Abstract:Mesoporous silicas such as SBA-15 and MCM-41 are being actively investigated for potential applications in catalysis, separations, and synthesis of nanostructured materials. A new method for functionalizing these mesoporous silicas with aromatic phenols is described. The resulting novel hybrid materials possess silyl aryl ether linkages to the silica surface that are thermally stable to ca. 550 degrees C, but can be easily cleaved at room temperature with aqueous base for quantitative recovery of the organic moieties. The materials have been characterized by nitrogen physisorption, FTIR, NMR, and quantitative analysis of surface coverages. The maximum densities of 1,3-diphenylpropane (DPP) molecules that could be grafted to the surface were less than those measured on a nonporous, fumed silica (Cabosil) and were also found to decrease as a function of decreasing pore size (5.6-1.7 nm). This is a consequence of steric congestion in the pores that is magnified at the smaller pore sizes, consistent with parallel studies conducted using a conventional silylating reagent, 1,1,3,3-tetramethyldisilazane. Pyrolysis of the silica-immobilized DPP revealed that pore confinement leads to enhanced rates and altered product selectivity for this free-radical reaction compared with the nonporous silica, and the rates and selectivities also depended on pore size. The influence of confinement is discussed in terms of enhanced encounter frequencies for bimolecular reaction steps and pore surface curvature that alters the accessibility and resultant selectivity for hydrogen transfer steps.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号