首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Energy transfer between conjugated polyelectrolytes in layer-by-layer assembled films
Authors:Bricaud Quentin  Fabre Roxane M  Brookins Robert N  Schanze Kirk S  Reynolds John R
Institution:Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, USA.
Abstract:We present a study of Fo?rster resonance energy transfer (FRET) between two emissive conjugated polyelectrolytes (CPEs) in layer-by-layer (LbL) self-assembled films as a means of examining their organization and architecture. The two CPEs are a carboxylic acid functionalized polyfluorene (PFl-CO(2)) and thienylene linked poly(phenylene ethynylene) (PPE-Th-CO(2)). The PFl-CO(2) presents a maximum emission at 418 nm, while the PPE-Th-CO(2) has an absorption λ(max) centered at 431 nm, in sufficient proximity for effective FRET. Several LbL films have been constructed using varied concentrations of the deposition solutions and identity of the buffer layers separating the two emissive layers, using a system of either weak polyelectrolytes, poly(allylamine hydrochloride) (PAH)/poly(sodium methacrylate) (PMA), or strong polyelectrolytes, poly(diallylammonium chloride) (PDDA)/poly(styrene sulfonate) sodium (PSS). The efficiency of FRET has been monitored using fluorescence spectroscopy. Initially, the fluorescence of the PFl-CO(2) (E(g) ~ 3.0 eV), which emits at 420 nm, is quenched by the lower band gap PPE-Th-CO(2) (E(g) ~ 2.5 eV). For films using the PAH/PMA system as buffer bilayers and deposited from 1 mM solutions, the PFl-CO(2) fluorescence is progressively recovered as the number of intervening buffer bilayers is increased. Ellipsometry measurements indicate that energy transfer between the two emissive layers is efficient to a distance of ca. 7 nm.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号