Syntheses, crystal structures, transport properties and first-principles electronic structure study of the (tTTF)2X (X=Br, I) low-dimensional antiferromagnets |
| |
Authors: | Fourmigué Marc Reinheimer Eric W Assaf Ali Jeannin Olivier Saad Ali Auban-Senzier Pascale Alemany Pere Rodríguez-Fortea Antonio Canadell Enric |
| |
Affiliation: | Sciences Chimiques de Rennes, Universite? Rennes 1, UMR CNRS 6226, Campus de Beaulieu 35042 Rennes, France. marc.fourmigue@univ-rennes1.fr |
| |
Abstract: | An efficient synthetic procedure for the preparation of unsymmetrically substituted tetrathiafulvalene (TTF) donors has been used to obtain the trimethylene-tetrathiafulvalene (tTTF) donor with high purity. Good quality crystals of the two (tTTF)(2)X (X = Br, I) salts have been obtained by electrocrystallization. The two salts are isomorphous and contain tTTF layers which are built from (tTTF)(2) dimeric units. Both systems are low-dimensional antiferromagnets with the highest Ne?el temperatures for TTF based radical cation salts: ≈ 35 K (Br salt) and ≈43 K (I salt). The resistivity is found to substantially decrease with pressure although both salts still have activated conductivity at 25 kbar. First-principles Density Functional Theory (DFT) calculations have been used to investigate the relative strength of the three different types of magnetic interactions in the tTTF layers as well as the potential magnetic ground states. These calculations successfully predict the nature of the ground state and suggest a possible correlation between structural details and Ne?el temperatures for the bromine and iodine salts. Remarkably, the calculated antiferromagnetic ground state can be predicted from the nesting properties of the Fermi surface for the hypothetical Pauli paramagnetic metallic state. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|