首页 | 本学科首页   官方微博 | 高级检索  
     

SE-MCNN-CTC的中文语音识别声学模型
引用本文:张威,翟明浩,黄子龙,李巍,曹毅. SE-MCNN-CTC的中文语音识别声学模型[J]. 应用声学, 2020, 39(2): 231-235
作者姓名:张威  翟明浩  黄子龙  李巍  曹毅
作者单位:江南大学,江南大学,江南大学,苏州工业职业技术学院,江南大学
基金项目:国家自然科学基金项目(51375209),江苏省“六大人才高峰”计划项目(ZBZZ-012),江苏省研究生创新计划项目(KYCX18_0630, KYCX18_1846)
摘    要:针对国内外缺少对振动轮噪声预估的问题,以某型振动轮为研究对象,首先基于动力学有限元理论对振动轮进行频率响应分析,其次采用声学边界元技术对振动轮辐射噪声进行了数值模拟,并通过实验验证了仿真结果的准确性,然后比较了垂直振动与圆周振动两种不同激振形式对辐射噪声的影响,得出垂直振动辐射噪声低的结论,最后对驾驶室声腔模态进行了仿真,与振动轮激振频率相近发生共振。通过调整激振频率,降低了司机耳旁噪声。所得研究成果可为振动轮辐射噪声的预估与改进提供一种切实可行的参考依据。

关 键 词:振动轮  有限元  声学边界元  垂直振动
收稿时间:2019-07-02
修稿时间:2020-02-26

Towards end-to-end speech recognition for Chinese mandarin using SE-MCNN-CTC
zhangwei,zhaiminghao,huangzilong,liwei and caoyi. Towards end-to-end speech recognition for Chinese mandarin using SE-MCNN-CTC[J]. Applied Acoustics(China), 2020, 39(2): 231-235
Authors:zhangwei  zhaiminghao  huangzilong  liwei  caoyi
Affiliation:Jiangnan University,Jiangnan University,Jiangnan University,Suzhou Instiute of Industrial Technology and Jiangnan University
Abstract:In order to solve the problems of high prediction error rate and poor generalization performance with traditional Convolutional Neural Network in Chinese speech recognition, different convolutional layers, pooling layers and fully connected layers on DCNN-CTC are analyzed in this paper. Based on the above model, two kinds of acoustic models referred as MCNN-CTC and SE-MCNN-CTC are proposed, respectively. With the combination of the advantages of MCNN and SENet in the latter model, the deep information transmission is reinforced, and the gradient problems can be effectively avoided simultaneously, the extracted feature maps can be adaptively recalibrated. Compared with DCNN-CTC, the research results show that SE-MCNN-CTC not only yields a 13.51% relative PER reduction, and the final PER is 22.21%, but also the generalization performance of the improved acoustic model can be improved effectively.
Keywords:Deep Learning   Automatic Speech Recognition   Acoustic Model   SE-MCNN-CTC
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《应用声学》浏览原始摘要信息
点击此处可从《应用声学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号