首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于近红外光谱与化学计量学的绿茶快速无损鉴别方法
作者姓名:李跑  申汝佳  李尚科  单杨  丁胜华  蒋立文  刘霞  杜国荣
作者单位:湖南农业大学食品科学技术学院食品科学与生物技术湖南省重点实验室,湖南长沙410128;湖南省农业科学院湖南省农产品加工研究所,湖南长沙410125;湖南农业大学食品科学技术学院食品科学与生物技术湖南省重点实验室,湖南长沙,410128;湖南省农业科学院湖南省农产品加工研究所,湖南长沙,410125;湖南农业大学食品科学技术学院食品科学与生物技术湖南省重点实验室,湖南长沙410128;上海烟草集团有限责任公司技术中心北京工作站,北京 101121
基金项目:国家自然科学基金项目(31601551和31671931)资助
摘    要:绿茶是我国饮用范围最广、最受欢迎的一类茶叶。不同品种绿茶叶外观上差别较小,非专业人员难以直接用肉眼进行辨别。传统化学方法操作复杂、检测费用较高,对样品具有破坏性,无法实现快速无损分析。近红外光谱技术是一种简便、快速、无损、重现性好、可直接用于在线定性定量分析的新型分析技术。由于种植方式以及土壤、气候等生长环境的差异,不同品种绿茶叶中含氢基团有机物的种类和含量也不相同,因此可以通过扫描样品的近红外光谱,得到不同品种绿茶叶的特征信息,实现对不同品种绿茶叶的快速鉴别。研究提出了一种基于近红外光谱与化学计量学技术对不同品种绿茶的快速无损鉴别方法。使用近红外光谱仪得到了八个品种绿茶样品的光谱图,用主成分分析方法对不同品种绿茶样品数据进行了聚类分析。使用连续小波变换方法消除了光谱信号中的基线干扰,从而提升聚类效果。利用基于标准偏差与相对标准偏差的变量筛选方法进一步提高了聚类结果的准确性。结果表明:主成分分析后样品的第一主成分和第二主成分的方差贡献率之和在90%以上,可以选取前两个主成分进行聚类分析。直接采用原始数据进行聚类分析的准确率较低,难以满足应用需要;连续小波变换可以有效地消除光谱信号中的基线干扰。与直接使用原始光谱聚类结果相比,采用连续小波变换后聚类效果有显著提升,但依旧不能实现所有品种茶叶样品的准确鉴别。为了进一步提高方法的稳健性和分类结果的准确性,选取了标准偏差和相对标准偏差较大的波长数据进行聚类分析。在符合平均值大于1%的波长范围内,剔除标准偏差小于5‰的波长,进一步选择较大相对标准偏差值对应的波长点进行聚类分析。采用这种方式,可以仅使用几十个甚至是几个波长即可实现绿茶样品品种的准确聚类分析。波长筛选方法可以大大提高主成分分析结果的准确性,采用近红外光谱分析技术与化学计量学方法可以实现对不同品种绿茶的快速鉴别。经过对各个光谱吸收区域波长所对应官能团分析后,初步得出多酚、酰胺类以及氨基酸类物质的种类不同或含量差异是形成绿茶品种差异的重要原因。所提出的基于近红外光谱与化学计量学技术的方法具有较强的鉴别能力,为绿茶的快速无损分析提供了一种新手段。

关 键 词:近红外光谱  绿茶  连续小波变换  波长筛选  主成分分析
收稿时间:2018-06-19
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号