首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phase transitions in KIO(3)
Authors:Lkhamsuren Bayarjargal  Leonore Wiehl  Alexandra Friedrich  Bj?rn Winkler  Erick A Juarez-Arellano  Wolfgang Morgenroth  Eiken Haussühl
Institution:Institut für Geowissenschaften, Universit?t Frankfurt, Altenh?ferallee 1, 60438 Frankfurt am Main, Germany. Bayarjargal@kristall.uni-frankfurt.de
Abstract:The high-pressure behavior of KIO(3) was studied up to 30?GPa using single crystal and powder x-ray diffraction, Raman spectroscopy, second harmonic generation (SHG) experiments and density functional theory (DFT)-based calculations. Triclinic KIO(3) shows two pressure-induced structural phase transitions at 7?GPa and at 14?GPa. Single crystal x-ray diffraction at 8.7(1)?GPa was employed to solve the structure of the first high-pressure phase (space group R3, a?=?5.89(1) ?, α?=?62.4(1)°). The bulk modulus, B, of this phase was obtained by fitting a second order Birch-Murnaghan equation of state (eos) to synchrotron x-ray powder diffraction data resulting in B(exp,second)?=?67(3)?GPa. The DFT model gave B(DFT,second)?=?70.9?GPa, and, for a third order Birch-Murnaghan eos, B(DFT,third)?=?67.9?GPa with a pressure derivative of Formula: see text]. Both high-pressure transformations were detectable by Raman spectroscopy and the observation of second harmonic signals. The presence of strong SHG signals shows that all high-pressure phases are acentric. By using different pressure media, we showed that the transition pressures are very strongly influenced by shear stresses. Earlier work on low- and high-temperature transitions was complemented by low-temperature heat capacity measurements. We found no evidence for the presence of an orientational glass, in contrast to earlier dielectric studies, but consistent with earlier low-temperature diffraction studies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号