首页 | 本学科首页   官方微博 | 高级检索  
     

一种结合Mean—shift和粒子滤波的视频跟踪算法
引用本文:李冬,陈恳,赵学梅,杨任尔. 一种结合Mean—shift和粒子滤波的视频跟踪算法[J]. 宁波大学学报(理工版), 2011, 24(1): 24-29
作者姓名:李冬  陈恳  赵学梅  杨任尔
作者单位:宁波大学信息科学与工程学院,浙江宁波,315211
基金项目:浙江省教育厅科研项目,宁波市自然科学基金
摘    要:提出一种结合均值偏移算法和粒子滤波理论的视频跟踪算法,解决了目标旋转、部分遮挡和运动速度过快的问题.通过均值偏移对粒子滤波中的粒子集进行进一步寻优,增加了粒子的有效性,极大减少了粒子采样的数量,且解决了经过多次重采样后粒子多样性降低的问题.新的粒子通过与观测值之间的巴氏系数来决定重要性权重.实验证明:本算法可以完成实时地对视频目标进行部分遮挡以及目标旋转下的跟踪,具有较强的鲁棒性.

关 键 词:均值偏移  粒子滤波  视频跟踪

A Video Tracking Algorithm with Fusion of Mean-shift and Particle Filtering
LI Dong,CHEN Ken,ZHAO Xue-mei,YANG Ren-er. A Video Tracking Algorithm with Fusion of Mean-shift and Particle Filtering[J]. Journal of Ningbo University(Natural Science and Engineering Edition), 2011, 24(1): 24-29
Authors:LI Dong  CHEN Ken  ZHAO Xue-mei  YANG Ren-er
Affiliation:( Faculty of Information Science and Technology, Ningbo University, Ningbo 315211, China )
Abstract:An algorithm for effective video tracking based on fusion of Mean-shift and particle filtering (PF) is proposed. The research efforts are made to tackle the problems with the target rotation, partial blocking and fast-moving, etc. Using Mean-shift in particle filtering is designed to further optimize the particle set, thus increasing the effectiveness of particle identification, reducing the number of particle sampling, and mitigating the drawbacks found in particle diversity reduction arising from multi-sampling process. Bhattacharyya factor is applied to determine the priority weighting between the new particle and measurements. The algorithm is put to real-time target tracking test on partial blocking and target rotation, manifesting the adequate efficiency and robustness.
Keywords:mean-shift  particle filtering  video tracking  Bhattacharyya factor
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号