首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microstructure and corrosion behavior of austenitic stainless steel treated with laser
Authors:IY Khalfallah  KY Benyounis
Institution:a Department of Mechanical Engineering, Faculty of Engineering, Garyounis University, Benghazi P.O. Box 1308, Libya
b Department of Chemistry, Science College , Garyounis University, Benghazi P.O. Box 1308, Libya
c Department of Industrial Engineering, Faculty of Engineering, University of Garyounis , Benghazi 1308, Libya
Abstract:Surface modification of AISI316 stainless steel by laser melting was investigated experimentally using 2 and 4 kW laser power emitted from a continuous wave CO2 laser at different specimen scanning speeds ranged from 300 to 1500 mm/min. Also, an investigation is reported of the introduction of carbon into the same material by means of laser surface alloying, which involves pre-coating the specimen surfaces with graphite powder followed by laser melting. The aim of these treatments is to enhance corrosion resistance by the rapid solidification associated with laser melting and also to increase surface hardness without affecting the bulk properties by increasing the carbon concentration near the surface. Different metallurgical techniques such as optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used to characterize the microstructure of the treated zone. The microstructures of the laser melted zones exhibited a dendritic morphology with a very fine scale with a slight increase in hardness from 200 to 230 Hv. However, the laser alloyed samples with carbon showed microstructure consisting of γ dendrite surrounded by a network of eutectic structures (γ+carbide). A significant increase in hardness from 200 to 500 Hv is obtained. Corrosion resistance was improved after laser melting, especially in the samples processed at high laser power (4 kW). There was shift in Icorr and Ecorr toward more noble values and a lower passive current density than that of the untreated materials. These improvements in corrosion resistance were attributed to the fine and homogeneous dendritic structure, which was found throughout the melted zones. The corrosion resistance of the carburized sample was lower than the laser melted sample.
Keywords:Laser treatment  Corrosion  Microstructure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号