Acid-Catalyzed Rearrangements of 5,6-exo-Epoxy-7-oxabicyclo[2.2.1]hept-2-yl Derivatives. Migratory Aptitudes of Acyl vs. Alkyl Groups in Wagner-Meerwein Transpositions |
| |
Authors: | Claude Le Drian Pierre Vogel |
| |
Abstract: | ![]() In the presence of HSO3F/Ac2O in CH2CL2, 2-exo- and 2-endo-cyano-5,6-exo-epoxy-7-oxabicyclo[2.2.1]hept-2-yl acetates ( 6a , b ) gave products derived from the epoxide-ring opening and a 1,2-shift of the unsubstituted alkyl group (σ bond C(3)–C(4)). In contrast, under similar conditions, the 5,6-exo-epoxy-7-oxabicyclo[2.2.1]heptan-2-one ( 6c ) gave 5-oxo-2-oxabicyclo[2.2.1]heptane-3,7-diyl diacetates 20 and 21 arising from the 1,2-shift of the acyl group. Acid treatment of 5,6-exo-epoxy-2,2-dimethoxy-7-oxabicyclo[2.2.1]heptane ( 6d ) and of 5,6-exo-epoxy-2,2-bis(benzyloxy)-7-oxabicyclo[2.2.1]heptane ( 6e ) gave minor products arising from epoxide-ring opening and the 1,2-shift of σ bond C(3)–C(4) and major products ( 25 , 29 ) arising from the 1,3-shift of a methoxy and benzyloxy group, respectively. Under similar conditions, 5,6-exo-epoxy-2,2-ethylenedioxy-7-oxabicyclo[2.2.1]heptane ( 6f ) gave 1,1-(ethylenedioxy)-2-(2-furyl)ethyl acetate ( 32 , major) and a minor product 33 , arising from the 1,2-shift of σ bond C(3)–C(4). The following order of migratory aptitudes for 1,2-shifts toward electron-deficient centers has been established: acyl > alkyl > alkyl α-substituted with inductive electron-withdrawing groups. This order is valid for competitive Wagner-Meerwein rearrangements involving equilibria between carbocation intermediates with similar exothermicities. |
| |
Keywords: | |
|
|