首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Petrov-Galerkin methods for natural convection in directional solidification of binary alloys
Authors:Peter M Adornato  Robert A Brown
Abstract:A Petrov-Galerkin finite element method is presented for calculation of the steady, axisymmetric thermosolutal convection and interface morphology in a model for vertical Bridgman crystal growth of nondilute binary alloys. The Petrov-Galerkin method is based on the formulation for biquadratic elements developed by Heinrich and Zienkiewicz and is introduced into the calculation of the velocity, temperature and concentration fields. The algebraic system is solved simultaneously for the field variables and interface shape by Newton's method. The results of the Petrov-Galerkin method are compared critically with those of Galerkin's method using the same finite element grids. Significant improvements in accuracy are found with the Petrov-Galerkin method only when the mesh is refined and when the formulation of the residual equations is modified to account for the mixed boundary conditions that arise at the solidification interface. Calculations for alloys with stable and unstable solute gradients show the occurrence of classical flow transitions and morphological instabilities in the solidification system.
Keywords:Convection-Diffusion Problems  Petrov-Galerkin Methods  Free-Boundary Problems  Solidification
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号