首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magnetohydrodynamic flow in a rectangular duct
Authors:Münevver Sezgin
Abstract:The magnetohydrodynamic flow of an incompressible, viscous, electrically conducting fluid in a rectangular duct, with an external magnetic field applied transverse to the flow, has been investigated. One of the duct's boundaries which is perpendicular to the magnetic field is taken partly insulated, partly conducting. An analytical solution has been developed for the velocity field and magnetic field by reducing the problem to the solution of a Fredholm integral equation of the second kind, which has been solved numerically. Solutions have been obtained for Hartmann numbers M up to 100. All the infinite series obtained are transformed to infinite integrals first and then to finite integrals which contain modified Bessel functions of the second kind. In this way, the difficulties associated with the computation of infinite integrals with oscillating integrands and slowly converging infinite series, the convergence of which is further affected for large values of M, have been avoided. It is found that, as M increases, boundary layers are formed near the non-conducting boundaries and in the interface region, and a stagnant region is developed in front of the conducting boundary for velocity field. The maximm value of magnetic field takes place on the conducting part. These behaviours are shown on some graphs.
Keywords:MHD Flows  Ducts Channels
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号