Abstract: | The polymerization of acenaphthylene (ACN) was examined in the presence of the group V and VI transition metal salts such as WCl6, MoCl5, TaCl5, and NbCl5, as catalysts under various reaction conditions. These transition metal salts were found to be effective catalysts for the polymerization of ACN. The polymerization of ACN by WCl6 in chlorobenzene proceeded at a high initial rate when the monomer to catalyst mole ratio was 200. In addition, it was observed that aromatic solvents generally were found to be superior to aliphatic solvents for both conversion and molecular weight. The structure of the resulting polymers was characterized by means of NMR, IR, UV, and x-ray diffraction. Emission properties were also investigated. Fluorescence emission spectra of the polymers obtained by WCl6 as a catalyst varied strongly depending on the polymerization solvent. Thus, it appears that the polyacenaphthylene produced by WCl6 was a different configuration dependent on the polymerization solvents used. |