Single-step transesterification with simultaneous concentration and stable isotope analysis of fatty acid methyl esters by gas chromatography-combustion-isotope ratio mass spectrometry |
| |
Authors: | Panetta Robert J Jahren A Hope |
| |
Affiliation: | Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822, USA. robert.panetta@gmail.com |
| |
Abstract: | ![]() Gas chromatography‐combustion‐isotope ratio mass spectrometry (GC‐C‐IRMS) is increasingly applied to food and metabolic studies for stable isotope analysis (δ13C), with the quantification of analyte concentration often obtained via a second alternative method. We describe a rapid direct transesterification of triacylglycerides (TAGs) for fatty acid methyl ester (FAME) analysis by GC‐C‐IRMS demonstrating robust simultaneous quantification of amount of analyte (mean r2 = 0.99, accuracy ±2% for 37 FAMEs) and δ13C (±0.13‰) in a single analytical run. The maximum FAME yield and optimal δ13C values are obtained by derivatizing with 10% (v/v) acetyl chloride in methanol for 1 h, while lower levels of acetyl chloride and shorter reaction times skewed the δ13C values by as much as 0.80‰. A Bland‐Altman evaluation of the GC‐C‐IRMS measurements resulted in excellent agreement for pure oils (±0.08‰) and oils extracted from French fries (±0.49‰), demonstrating reliable simultaneous quantification of FAME concentration and δ13C values. Thus, we conclude that for studies requiring both the quantification of analyte and δ13C data, such as authentication or metabolic flux studies, GC‐C‐IRMS can be used as the sole analytical method. Copyright © 2011 John Wiley & Sons, Ltd. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|