首页 | 本学科首页   官方微博 | 高级检索  
     检索      

铈基模型催化剂的纳米结构:有序CeO2(111)薄膜上的Pt-Co纳米颗粒
作者姓名:Yaroslava Lykhach  TomasSkala  Armin Neitzel  Nataliya Tsud  Klara Beranova  Kevin CPrince  Vladimir Matolin  Jorg Libuda
作者单位:弗里德里希-亚历山大埃尔朗根-纽伦堡大学;查尔斯大学数学与物理学院表面与等离子体科学系;Elettra-Sincrotrone Trieste SCpA
基金项目:funded by the European Community(FP7-NMP.2012.1.1-1 project chip CAT,Reference No.310191);by the Deutsche Forschungsgemeinschaft(DFG)within the Excellence Cluster“Engineering of Advanced Materials”in the framework of the excellence initiative;support by the DFG is acknowledged through the Priority Program SPP 1708 and the Research Unit FOR 1878;supported by structural funds under project CZ.02.1.01/0.0/0.0/16_025/0007414;by the Czech Ministry of Education(grant LM2015057)。
摘    要:制备并表征了原子分散的模型体系:氧化铈负载的Pt-Co核壳催化剂.采用超高真空物理气相沉积法制备了有序CeO2(111)膜上的Pt@Co和Co@Pt核壳纳米结构,并用同步辐射光电子能谱和共振光发射光谱对其进行了研究.在低Co覆盖率(0.5 ML)下Co在CeO2(111)上沉积生成Co-CeO2(111)固溶体,然后在更高Co覆盖率下生长为金属Co纳米粒子.Pt@Co和Co@Pt两种模型结构在300-500 K温度范围内都能稳定地抗烧结.在500 K退火后, Pt@Co纳米结构含有接近纯的钴壳,而Co@Pt中的铂壳部分被金属钴覆盖.在550 K以上,在Pt@Co和Co@Pt纳米结构中近表面区域的重新排序中产生了次表层的Pt Co合金和富铂外壳.对于Co@Pt纳米粒子,近表面区域的化学有序性取决于沉积铂壳的初始厚度.无论初始铂壳的厚度如何,在有氧存在下对Co@Pt纳米结构进行退火,都会导致Pt-Co合金的分解以及Co的氧化.Co的逐步氧化与吸附质诱导的Co偏析共同导致在负载的Co@Pt纳米结构表面形成厚的Co O层.这一过程伴随着CeO2(111)薄膜的裂解,以及在550K以上氧气中退火后CeO2包裹氧化的Co@Pt纳米结构.很明显,于不同温度下在氧气和氢气的氧化-还原循环过程中,无论铂的初始厚度是多少,负载的Co@Pt纳米颗粒的结构和化学成分的变化主要是由氧化所致,而还原处理的影响则很小.

关 键 词:核壳纳米粒子  模型催化剂  Pt-Co  氧化铈  化学有序性  同步辐射光电子能谱

Nanoscale architecture of ceria-based model catalysts: Pt-Co nanostructures on well-ordered CeO2(111) thin films
Yaroslava Lykhach,TomasSkala,Armin Neitzel,Nataliya Tsud,Klara Beranova,Kevin CPrince,Vladimir Matolin,Jorg Libuda.Nanoscale architecture of ceria-based model catalysts: Pt-Co nanostructures on well-ordered CeO2(111) thin films[J].Chinese Journal of Catalysis,2020(6):985-997.
Authors:Yaroslava Lykhach  TomásSkála  Armin Neitzel  Nataliya Tsud  Klára Beranová  Kevin CPrince  Vladimír Matolín  Jorg LibudaInterface Research and Catalysis  Erlangen Catalysis Resource Center  Friedrich-Alexander-Universit?t Erlangen-Nürnberg  Egerlandstrasse  Erlangen  Germany  Charles University  Faculty of Mathematics and Physics
Institution:,Department of Surface and Plasma Science,V Hole?ovi?kách 2,18000 Prague,Czech Republic;Elettra-Sincrotrone Trieste SCpA,Strada Statale 14,km 163.5,34149 Basovizza-Trieste,Italy)
Abstract:We have prepared and characterized atomically well-defined model systems for ceria-supported Pt-Co core-shell catalysts. Pt@Co and Co@Pt core-shell nanostructures were grown on well-ordered CeO2(111) films on Cu(111) by physical vapour deposition of Pt and Co metals in ultrahigh vacuum and investigated by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy. The deposition of Co onto CeO2(111) yields CoCeO2(111) solid solution at low Co coverage(0.5 ML), followed by the growth of metallic Co nanoparticles at higher Co coverages. Both Pt@Co and Co@Pt model structures are stable against sintering in the temperature range between 300 and 500 K. After annealing at 500 K, the Pt@Co nanostructure contains nearly pure Co-shell while the Pt-shell in the Co@Pt is partially covered by metallic Co. Above 550 K, the re-ordering in the near surface regions yields a subsurface Pt-Co alloy and Pt-rich shells in both Pt@Co and Co@Pt nanostructures. In the case of Co@Pt nanoparticles, the chemical ordering in the near surface region depends on the initial thickness of the deposited Pt-shell. Annealing of the Co@Pt nanostructures in the presence of O2 triggers the decomposition of Pt-Co alloy along with the oxidation of Co, regardless of the thickness of the initial Pt-shell. Progressive oxidation of Co coupled with adsorbate-induced Co segregation leads to the formation of thick CoO layers on the surfaces of the supported Co@Pt nanostructures. This process is accompanied by the disintegration of the CeO2(111) film and encapsulation of oxidized Co@Pt nanostructures by CeO2 upon annealing in O2 above 550 K. Notably, during oxidation and reduction cycles with O2 and H2 at different temperatures, the changes in the structure and chemical composition of supported Co@Pt nanostructures were driven mainly by oxidation while reduction treatments had little effect regardless of the initial thickness of the Pt-shell.
Keywords:Core-shell nanoparticles  Model catalyst  Pt-Co  Cerium oxide  Chemical ordering  Synchrotron radiation photoelectron spectroscopy
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号