Three-dimensional diffuse optical imaging of hand joints: System description and phantom studies |
| |
Authors: | Qizhi Zhang Huabei Jiang |
| |
Affiliation: | Department of Physics and Astronomy, Clemson University, 118 Kinard Lab, Clemson, SC 29634, USA |
| |
Abstract: | ![]() In this paper we describe a three-dimensional (3D) continuous wave (CW) diffuse optical tomography (DOT) system and present 3D volumetric reconstruction studies using this DOT system with simple phantom models that simulate hand joints. The CCD-based DOT system consists of 64×64 source/detector fiber optic channels, which are arranged in four layers, forming a cylindrical fiber optic/tissue interface. Phantom experiments are used to evaluate system performance with respective to axial spatial resolution, optical contrast and target position for detection of osteoarthritis where cartilage is the primary target region of interest. These phantom studies suggest that we are able to quantitatively resolve a 2 mm thick “cartilage” and qualitatively resolve a 1 mm thick “cartilage” using our 3D reconstruction approach. Our results also show that optical contrast of 3:1–7:1 between the “disease cartilage” and normal cartilage can be quantitatively recovered. Finally, the target position along axial direction on image reconstruction is studied. All the images are obtained using our 3D finite-element-based reconstruction algorithm. |
| |
Keywords: | Diffuse optical tomography Three-dimensional imaging Joints |
本文献已被 ScienceDirect 等数据库收录! |
|