Abstract: | Structure and vibrational dynamics of γ′‐V2O5 synthesized from a pristine γ‐LiV2O5 sample via a chemical oxidation route was studied by means of Raman spectroscopy and quantum‐chemical calculations. The calculations based on density functional theory reliably reproduce the experimental structure of the γ′‐V2O5 lattice. The calculated Raman spectrum agrees remarkably well with the experimental one. Making use of the agreement, a complete assignment of Raman bands to vibrations of particular structural units is proposed. The comparison of Raman spectra and structural features of α‐V2O5 and γ′‐V2O5 polymorphs allowed establishing reliable ‘structure–spectrum’ correlations and identifying Raman peaks characteristic for different structural units. Copyright © 2015 John Wiley & Sons, Ltd. |