首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optofluidic droplet router
Authors:Michael Esseling  Annamaria Zaltron  Wolfgang Horn  Cornelia Denz
Abstract:This contribution presents an optofluidic droplet router which is able to route and steer microdroplets using optically induced forces created solely by the bulk photovoltaic effect on a nonlinear substrate. The combination of microfluidic tools with the properties of a photorefractive crystal allows for the generation of dielectrophoretic forces that can be either repulsive, leading to virtual barriers, or attractive, creating virtual rails. The sign of these forces is solely determined by the electrical properties of the liquid medium under investigation. Moreover, the induced structures on the bottom of the microfluidic channel are optically reconfigurable, so that the same device can easily be adopted for different purposes. Appropriate droplet‐generating devices are fabricated by UV illumination of SU‐8 and polydimethylsiloxane replica molding of the master structures. The bottom of the channels is formed by an iron‐doped lithium niobate crystal, whose internal electric fields are induced by structured illumination patterns and exert dielectrophoretic forces on droplets in the microfluidic section.
image

Keywords:Optofluidics  Lithium niobate  Droplets  Microfluidics  Photorefractive effect
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号