首页 | 本学科首页   官方微博 | 高级检索  
     


Clonal selection: an immunological algorithm for global optimization over continuous spaces
Authors:Mario Pavone  Giuseppe Narzisi  Giuseppe Nicosia
Affiliation:1. Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
2. Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, NY, 10012, USA
Abstract:
In this research paper we present an immunological algorithm (IA) to solve global numerical optimization problems for high-dimensional instances. Such optimization problems are a crucial component for many real-world applications. We designed two versions of the IA: the first based on binary-code representation and the second based on real values, called opt-IMMALG01 and opt-IMMALG, respectively. A large set of experiments is presented to evaluate the effectiveness of the two proposed versions of IA. Both opt-IMMALG01 and opt-IMMALG were extensively compared against several nature inspired methodologies including a set of Differential Evolution algorithms whose performance is known to be superior to many other bio-inspired and deterministic algorithms on the same test bed. Also hybrid and deterministic global search algorithms (e.g., DIRECT, LeGO, PSwarm) are compared with both IA versions, for a total 39 optimization algorithms.The results suggest that the proposed immunological algorithm is effective, in terms of accuracy, and capable of solving large-scale instances for well-known benchmarks. Experimental results also indicate that both IA versions are comparable, and often outperform, the state-of-the-art optimization algorithms.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号