Abstract: | ![]() The electrostatic potential-derived charges for the catecholamine neurotransmitter dopamine were calculated at the STO-3G and 6-31G* basis sets for six different molecular conformations. The degree of variance of the charges with changing conformations was examined. The 6-31G* basis set produced charges that were more sensitive to changes in conformation than those derived from the STO-3G electrostatic potentials. The implication of the charge variations in molecular mechanics calculations was also investigated. The molecular mechanics results in the gas phase exhibited a variance depending upon the charge set used. The force field calculations varied much less when aqueous solvation was included in the calculations through a continuum model. © 1993 John Wiley & Sons, Inc. |