首页 | 本学科首页   官方微博 | 高级检索  
     

加权最小二乘支持向量机改进算法及其在光谱定量分析中的应用
引用本文:吕剑峰,戴连奎. 加权最小二乘支持向量机改进算法及其在光谱定量分析中的应用[J]. 分析化学, 2007, 35(3): 340-344
作者姓名:吕剑峰  戴连奎
作者单位:浙江大学工业控制技术国家重点实验室,杭州,310027;浙江大学工业控制技术国家重点实验室,杭州,310027
基金项目:国家高技术研究发展计划(863计划) , 浙江省科技计划
摘    要:为克服异常训练样本对校正模型的负面影响,提出了一种加权最小二乘支持向量机(WLS-SVM)的改进算法,解决了原有算法存在的迭代收敛问题,并将其运用于光谱定量分析.实验结果表明:与原有算法相比,WLS-SVM改进算法显著增强了对异常样本的检测能力,并大幅度地提高了校正模型的稳健性.

关 键 词:支持向量机  异常检测  稳健建模  近红外光谱
修稿时间:2006-05-172006-08-14

Improved Weighted Least Squares Support Vector Machines Algorithm and Its Applications in Spectroscopic Quantitative Analysis
Lü Jian-Feng,Dai Lian-Kui. Improved Weighted Least Squares Support Vector Machines Algorithm and Its Applications in Spectroscopic Quantitative Analysis[J]. Chinese Journal of Analytical Chemistry, 2007, 35(3): 340-344
Authors:Lü Jian-Feng  Dai Lian-Kui
Affiliation:National Key Lab of Industrial Control Technology, Zhejiang University, Hangzhou 310027
Abstract:An improved algorithm of weighted least squares support vector machines (WLS-SVM) is proposed to overcome the negatine influence of abnornmal traningsamples on calibration models. The improved algorithm solves the iterative convergence problem in the original algorithm and has been used in spectroscopic quantitative analysis. Compared to the original algorithm, the experimental results show that the new algorithm remarkably improves model robustness and the ability to detect abnormal samples.
Keywords:Support vector machines   anomaly detection   robust modeling   near-infrared spectroscopy
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号