首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatial-temporal dispersion of the kinetic coefficients near the Anderson transition
Authors:S G Novokshonov  A G Groshev
Institution:(1) Physicotechnical Institute, Ural Branch of the Russian Academy of Sciences, 426001 Izhevsk, Russia
Abstract:A generalization of the Vollhardt-Wölfle localization theory is proposed to make it possible to study the spatial-temporal dispersion of the kinetic coefficients of a d-dimensional disordered system in the low-frequency, long-wavelength range (ω?F and q?k F ). It is shown that the critical behavior of the generalized diffusion coefficient D(q,ω) near the Anderson transition agrees with the general Berezinskii-Gor’kov localization criterion. More precisely, on the metallic side of the transition the static diffusion coefficient D(q,0) vanishes at a mobility threshold λ c common for all q: D(q, 0)∝t=(λ c ?λ)/λ c →0, where λ=1/(2π?F τ) is a dimensionless coupling constant. On the insulator side, q≠0 D(q,ω)∝? as ω→0 for all finite q. Within these limits, the scale of the spatial dispersion of D(q,ω) decreases in proportion to t in the metallic phase and in proportion to ωξ 2, where ξ is the localization length, in the insulator phase until it reaches its lower limit ~λ F. The suppression of the spatial dispersion of D(q,ω) near the Anderson transition up to the atomic scale confirms the asymptotic validity of the Vollhardt-Wölfle approximation: D(q,ω)?D(ω) as |t|→0 and ω→0. By contrast, the scale of the spatial dispersion of the electrical conductivity in the insulator phase is of order of the localization length and diverges in proportion to |t|?v as |t|→0.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号