首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quinoxaline and Pyrido[x,y-b]pyrazine-Based Emitters: Tuning Normal Fluorescence to Thermally Activated Delayed Fluorescence and Emitting Color over the Entire Visible-Light Range
Authors:Tingting Huang  Prof Dr Di Liu  Prof Dr Jingyang Jiang  Prof Dr Wenfeng Jiang
Institution:State Key Laboratory of Fine Chemicals, College of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024 P.R. China
Abstract:Quinoxaline (Q), pyrido2,3-b]pyrazine (PP) and pyrido3,4-b]pyrazine (iPP) are used as electron acceptors (A) to design a series of D–π–A-type light-emitting materials with different donor (D) groups. By adjusting the molecular torsion angles through changing D from carbazole (Cz) to 10-dimethylacridine (DMAC) or 10H-phenoxazine (PXZ) for a fixed A, the luminescence is tuned from normal fluorescence to thermally activated delayed fluorescence (TADF). By gradually enhancing the intramolecular charge-transfer extent through combining different D and A, the emission color is continuously and regularly tuned from pure blue to orange–red. Organic light-emitting diodes (OLEDs) containing these compounds as doped emitters exhibit bright electroluminescence with emission colors covering the entire visible-light range. An external quantum efficiency (ηext) of 1.2 % with excellent color coordinates of (0.16, 0.07) is obtained for the pure-blue OLED of Q-Cz. High ηext values of 12.9 (35.9) to 16.7 % (51.9 cd A−1) are realized in the green, yellow, and orange–red TADF OLEDs. All PP- and iPP-based TADF emitters exhibit superior efficiency stabilities to that of analogues of Q. This provides a practical strategy to tune the emission color of Q, PP, and iPP derivatives with the same molecular skeletons over the entire visible-light range.
Keywords:donor–acceptor systems  fluorescence  luminescence  organic light-emitting diodes  thermally activated delayed fluorescence (TADF)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号