首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ab initio thermodynamics examination of sulfur species present on Rh, Ni, and binary Rh-Ni surfaces under steam reforming reaction conditions
Authors:Lee Kyungtae  Song Chunshan  Janik Michael J
Institution:Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Abstract:The stable form of adsorbed sulfur species and their coverage were investigated on Rh, Ni, and Rh-Ni binary metal surfaces using density functional theory calculations and the ab initio thermodynamics framework. S adsorption, SO(x) (x = 1-4) adsorption, and metal sulfide formation were examined on Rh(111) and Ni(111) pure metals. Both Rh and Ni metals showed a preference for S surface adsorption rather than SO(x) adsorption under steam reforming conditions. The transition temperature from a clean surface (<(1)/(9) ML) to S adsorption was identified on Rh(111), Ni(111), Rh(1)Ni(2)(111), and Rh(2)Ni(1)(111) metals at various P(H(2))/P(H(2)S) ratios. Bimetallic Rh-Ni metals transition to a clean surface at lower temperatures than does the pure Rh metal. Whereas Rh is covered with (1)/(3) ML of sulfur under the reforming conditions of 4-100 ppm S and 800 °C, Rh(1)Ni(2) is covered with (1)/(9) ML of sulfur at the lower end of this range (4-33 ppm S). The possibility of sulfate formation on Rh catalysts was examined by considering higher oxygen pressures, a Rh(221) stepped surface, and the interface between a Rh(4) cluster and CeO(2)(111) surface. SO(x) surface species are stable only at high oxygen pressure or low temperatures outside those relevant to the steam reforming of hydrocarbons.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号