Evidence for new bands in the 3nu1 and 4nu1 regions of propyne |
| |
Authors: | Ganot Yuval Rosenwaks Salman Bar Ilana |
| |
Affiliation: | Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel. |
| |
Abstract: | ![]() Vibrationally mediated photodissociation and room-temperature photoacoustic (PA) spectroscopy have been used for obtaining action (monitoring the yield of H photofragments) and absorption spectra of the second (3nu(1)) and third (4nu(1)) C-H acetylenic stretches overtone regions in propyne. The band contours appearing in these regions seem mostly regular even though they are perturbed, as expressed by the origin shifts in different K components, splitting of the K structure, and splitting due to resonances between neighboring states. Symmetric rotor simulations of the band contours of the PA and action spectra allowed extraction of the molecular parameters and rough estimates for the homogeneous broadening arising from energy flow to the bath vibrational states. We particularly benefited from the reduced congestion in the jet-cooled action spectra and their simulations, which enabled observation of yet unknown features in the vicinity of the 3nu(1) and 4nu(1) states. Particularly, the emergence of the new state in the 3nu(1) region was confirmed by the action spectra monitored at several differing jet temperatures, suggesting that it is a dark state in IR vibrational excitation that becomes brighter in UV excitation to the upper electronic state. The monitored and Gaussian-fitted Doppler profiles point to the release of H photofragments with low average translational energies, attributed to an indirect dissociation process occurring after internal conversion to the ground electronic state and isomerization to allene. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|