首页 | 本学科首页   官方微博 | 高级检索  
     


CDOCKER and $$lambda$$-dynamics for prospective prediction in D3R Grand Challenge 2
Authors:Xinqiang Ding,Ryan L. Hayes,Jonah Z. Vilseck,Murchtricia K. Charles,Charles L. Brooks  Suffix"  >III
Affiliation:1.Department of Computational Medicine and Bioinformatics,Univeristy of Michigan,Ann Arbor,USA;2.Department of Chemistry,University of Michigan,Ann Arbor,USA
Abstract:The opportunity to prospectively predict ligand bound poses and free energies of binding to the Farnesoid X Receptor in the D3R Grand Challenge 2 provided a useful exercise to evaluate CHARMM based docking (CDOCKER) and (lambda)-dynamics methodologies for use in “real-world” applications in computer aided drug design. In addition to measuring their current performance, several recent methodological developments have been analyzed retrospectively to highlight best procedural practices in future applications. For pose prediction with CDOCKER, when the protein structure used for rigid receptor docking was close to the crystallographic holo structure, reliable poses were obtained. Benzimidazoles, with a known holo receptor structure, were successfully docked with an average RMSD of 0.97 (AA). Other non-benzimidazole ligands displayed less accuracy largely because the receptor structures we chose for docking were too different from the experimental holo structures. However, retrospective analysis has shown that when these ligands were re-docked into their holo structures, the average RMSD dropped to 1.18 (AA) for all ligands. When sulfonamides and spiros were docked with the apo structure, which agrees more with their holo structure than the structures we chose, five out of six ligands were correctly docked. These docking results emphasize the need for flexible receptor docking approaches. For (lambda)-dynamics techniques, including multisite (lambda)-dynamics (MS(lambda)D), reasonable agreement with experiment was observed for the 33 ligands investigated; root mean square errors of 2.08 and 1.67 kcal/mol were obtained for free energy sets 1 and 2, respectively. Retrospectively, soft-core potentials, adaptive landscape flattening, and biasing potential replica exchange (BP-REX) algorithms were critical to model large substituent perturbations with sufficient precision and within restrictive timeframes, such as was required with participation in Grand Challenge 2. These developments, their associated benefits, and proposed procedures for their use in future applications are discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号