首页 | 本学科首页   官方微博 | 高级检索  
     


Splitting for Multi-objective Optimization
Authors:Qibin?Duan  author-information"  >  author-information__contact u-icon-before"  >  mailto:q.duan@uq.edu.au"   title="  q.duan@uq.edu.au"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author  author-information__orcid u-icon-before icon--orcid u-icon-no-repeat"  >  http://orcid.org/---"   itemprop="  url"   title="  View OrcID profile"   target="  _blank"   rel="  noopener"   data-track="  click"   data-track-action="  OrcID"   data-track-label="  "  >View author&#  s OrcID profile,Dirk?P.?Kroese
Affiliation:1.School of Mathematics and Physics,The University of Queensland,Brisbane,Australia
Abstract:We introduce a new multi-objective optimization (MOO) methodology based the splitting technique for rare-event simulation. The method generalizes the elite set selection of the traditional splitting framework, and uses both local and global sampling to sample in the decision space. In addition, an ??-dominance method is employed to maintain good solutions. The algorithm was compared with state-of-the art MOO algorithms using a prevailing set of benchmark problems. Numerical experiments demonstrate that the new algorithm is competitive with the well-established MOO algorithms and that it can outperform the best of them in various cases.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号