首页 | 本学科首页   官方微博 | 高级检索  
     


Stability of AgIII towards Halides in Organosilver(III) Complexes
Authors:Daniel Joven-Sancho  Dr. Miguel Baya  Prof. Dr. Larry R. Falvello  Dr. Antonio Martín  Dr. Jesús Orduna  Dr. Babil Menjón
Affiliation:1. Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain;2. Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
Abstract:The involvement of silver in two-electron AgI/AgIII processes is currently emerging. However, the range of stability of the required and uncommon AgIII species is virtually unknown. Here, the stability of AgIII towards the whole set of halide ligands in the organosilver(III) complex frame [(CF3)3AgX] (X=F, Cl, Br, I, At) is theoretically analyzed. The results obtained depend on a single factor: the nature of X. Even the softest and least electronegative halides (I and At) are found to form reasonably stable AgIII−X bonds. Our estimates were confirmed by experiment. The whole series of nonradiative halide complexes [PPh4][(CF3)3AgX] (X=F, Cl, Br, I) has been experimentally prepared and all its constituents have been isolated in pure form. The pseudohalides [PPh4][(CF3)3AgCN] and [PPh4][(CF3)3Ag(N3)] have also been isolated, the latter being the first silver(III) azido complex. Except for the iodo compound, all the crystal and molecular structures have been established by single-crystal X-ray diffraction methods. The decomposition paths of the [(CF3)3AgX] entities at the unimolecular level have been examined in the gas phase by multistage mass spectrometry (MSn). The experimental detection of the two series of mixed complexes [CF3AgX] and [FAgX] arising from the corresponding parent species [(CF3)3AgX] demonstrate that the Ag−X bond is particularly robust. Our experimental observations are rationalized with the aid of theoretical methods. Smooth variation with the electronegativity of X is also observed in the thermolyses of bulk samples. The thermal stability in the solid state gradually decreases from X=F (145 °C, dec.) to X=I (78 °C, dec.) The experimentally established compatibility of AgIII with the heaviest halides is of particular relevance to silver-mediated or silver-catalyzed processes.
Keywords:highest oxidation states  inverted ligand fields  organosilver  silver(III)  unimolecular processes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号