首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An experimental investigation of crack-path directional stability
Authors:R Streit  I Finnie
Institution:1. Lawrence Livermore Lab., 94550, Livermore, CA
2. University of California, 94720, Berkeley, CA
Abstract:Using the criterion that a crack will extend perpendicular to the maximum circumferential stress,σ θ, we show that the directional stability of crack growth is governed by the location of microcrack initiation ahead of the crack tip. At distances greater than a geometrical radiusr o, the maximum value ofσ θ deviates from the position of symmetry. Thus, if we assume that the physical processes involved in fracture lead to crack initiation at a distancer c ahead of the crack tip, the criterion for directional stability isr o>r c. Experimental and theoretical values ofr o verify that, asr o becomes small, the crack's directional stability deteriorates. Observing that a lengthwise compressive stress increasesr o, a center-cracked specimen was developed which allows the application of controlled lengthwise compression independently of the opening-mode load. A detailed photoelastic analysis of the specimen has provided the value ofr o as a function of the crack length. The value ofr o is then compared with the expected microcrack initiation distances in ductile fracture. By applying sufficient lengthwise compression, we are able to make the crack grow straight and obtain numerous data points from this specimen which would otherwise be directionally unstable. The results indicate that, as the total lengthwise tensile stress at the crack tip increases, the fracture toughness also increases. Using this information we can then adjustK Ic for zero lengthwise loading and obtain a geometry independent fracture toughness.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号